Two Decompositions in Topological Combinatorics with Applications to Matroid Complexes
نویسنده
چکیده
This paper introduces two new decomposition techniques which are related to the classical notion of shellability of simplicial complexes, and uses the existence of these decompositions to deduce certain numerical properties for an associated enumerative invariant. First, we introduce the notion of M-shellability, which is a generalization to pure posets of the property of shellability of simplicial complexes, and derive inequalities that the rank-numbers of M-shellable posets must satisfy. We also introduce a decomposition property for simplicial complexes called a convex ear-decomposition, and, using results of Kalai and Stanley on h-vectors of simplicial polytopes, we show that h-vectors of pure rank-d simplicial complexes that have this property satisfy h0 ≤ h1 ≤ · · · ≤ h[d/2] and hi ≤ hd−i for 0 ≤ i ≤ [d/2]. We then show that the abstract simplicial complex formed by the collection of independent sets of a matroid (or matroid complex ) admits a special type of convex eardecomposition called a PS ear-decomposition. This enables us to construct an associated M-shellable poset, whose set of rank-numbers is the h-vector of the matroid complex. This results in a combinatorial proof of a conjecture of Hibi [17] that the h-vector of a matroid complex satisfies the above two sets of inequalities.
منابع مشابه
Poset Convex-ear Decompositions and Applications to the Flag H-vector
Possibly the most fundamental combinatorial invariant associated to a finite simplicial complex is its f-vector, the integral sequence expressing the number of faces of the complex in each dimension. The h-vector of a complex is obtained by applying a simple invertible transformation to its f-vector, and thus the two contain the same information. Because some properties of the f-vector are easi...
متن کاملMatroid Duality From Topological Duality In Surfaces Of Nonnegative Euler Characteristic
One of the most basic examples of matroid duality is the following. Let G be a graph imbedded in the plane and let G∗ be its topological dual graph. If M(G) is the cycle matroid of G, then the dual matroid M∗(G) = M(G∗). If G is a connected graph that is 2-cell imbedded in a surface of demigenus d > 0 (the demigenus is equal to 2 minus the euler characteristic of the surface), then M∗(G) 6= M(G...
متن کاملBrick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملGlicci Simplicial Complexes
One of the main open questions in liaison theory is whether every homogeneous Cohen-Macaulay ideal in a polynomial ring is glicci, i.e. if it is in the G-liaison class of a complete intersection. We give an affirmative answer to this question for StanleyReisner ideals defined by simplicial complexes that are weakly vertex-decomposable. This class of complexes includes matroid, shifted and Goren...
متن کاملBrick Polytopes of Spherical Subword Complexes and Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کامل